

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

WBJEE |

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

JEE MAIN

JEE ADV.

BITSAT

WBJEE MHT CET

and many more...

Why download MARKS?

- Schapter-wise PYQ of JEE Main, JEE Advanced, NEET, AllMS, BITSAT, WBJEE, MHT CET etc.
- 篖 Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

TRIGONOMETRIC EQUATIONS

DEFINITION

The equations involving trigonometric function of unknown angles are known as Trigonometric equations.

A solution of a trigonometric equation is the value of the unknown angle that satisfies the equation.

PERIODIC FUNCTION

A function f(x) is said to be periodic if there exists T>0 such that f(x+T)=f(x) for all x in the domain of definitions of f(x). If T is the smallest positive real number such that f(x+T)=f(x), then it is called the fundamental period (or) period of f(x)

Function	Period
$\sin (ax + b)$, $\cos (ax + b)$, $\sec (ax + b)$, $\csc (ax + b)$	2π/a
$\tan (ax + b)$, $\cot (ax + b)$	π /a
$ \sin (ax + b), \cos (ax + b) , \sec (ax + b) , \csc (ax + b) $	π / a
$ \tan(ax + b) , \cot(ax + b) $	$\pi/2a$

The period of sinx, cosec x, cos x, sec x is 2π and period of tan x, cot x, is π .

TRIGONOMETRICAL EQUATIONS WITH THEIR GENERAL SOLUTION

Trigonometrical equation		General solution
If $\sin \theta = 0$	then	$\theta = n\pi$: $n \in I$
If $\cos \theta = 0$	then	$\theta = (n\pi + \pi/2) = (2n+1)\pi/2 : n \in I$
If $\tan \theta = 0$	then	$\theta = n\pi : n \in I$
If $\sin \theta = 1$	then	$\theta = 2n \pi + \pi/2 = (4n+1)\pi/2 : n \in I$
If $\cos \theta = 1$	then	$\theta = 2n \pi : n \in I$
If $\sin \theta = \sin \alpha$	then	$\theta = n \pi + (-1)^n \alpha$ where $\alpha \in [-\pi/2, \pi/2]$
		: n ∈ I
If $\cos \theta = \cos \alpha$	then	$\theta = 2n \pi \pm \alpha$ where $\alpha \in (0, \pi]$: $n \in I$
If $\tan \theta = \tan \alpha$	then	$\theta = n \pi + \alpha \text{ where } \alpha \in (-\pi/2, \pi/2]: n \in I$
If $\sin^2 \theta = \sin^2 \alpha$	then	$\theta = n \pi \pm \alpha : n \in I$
If $\cos^2 \theta = \cos^2 \alpha$	then	$\theta = n \pi \pm \alpha : n \in I$
If $\tan^2 \theta = \tan^2 \alpha$	then	$\theta = n \pi \pm \alpha : n \in I$
$ \begin{array}{c c} \sin \theta = \sin \alpha \\ \text{If} & \cos \theta = \cos \alpha \end{array} \right _{\star} $	then	$\theta = 2 n \pi + \alpha : n \in I$
$ \begin{vmatrix} \sin \theta = \sin \alpha \\ \tan \theta = \tan \alpha \end{vmatrix}^{*} $	then	$\theta = 2n \pi + \alpha : n \in I$
	then	$\theta = 2n \pi + \alpha : n \in I$

- * Every where in this chapter "n" is taken as an integer.
- * If α be the least positive value of θ which statisfy two given trigonometrical equations, then the general value of θ will be $2n\pi + \alpha$

GENERAL SOLUTION OF TRIGONOMETRICAL EQUATION $a\cos\theta + b\sin\theta = C$

To solve the equation a $\cos \theta + b \sin \theta = c$, substitute $a = r \cos \phi$, $b = r \sin \phi$ such that

$$r = \sqrt{a^2 + b^2}$$
, $\phi = tan^{-1}\frac{b}{a}$

Substituting these values in the equation we have $r \cos \phi \cos \theta r \sin \phi \sin \theta = c$

$$cos \big(\theta - \phi\big) = \frac{c}{r} \qquad \Rightarrow \qquad cos \big(\theta - \phi\big) = \frac{c}{\sqrt{a^2 + b^2}}$$

If $\mid c \mid > \sqrt{a^2 + b^2}$, then the equation;

a cos θ + b sin θ = c has no solution

If $|c| \le \sqrt{a^2 + b^2}$, then take;

$$\frac{|c|}{\sqrt{a^2+b^2}}=\cos \alpha \text{ , so that }$$

$$\cos (\theta - \phi) = \cos \alpha$$

$$\Rightarrow$$
 $(\theta - \phi) = 2n\pi \pm \alpha$

$$\Rightarrow$$
 $\theta = 2n\pi \pm \alpha + \phi$

SOLUTIONS IN THE CASE OF TWO EQUATIONS ARE GIVEN

Two equations are given and we have to find the values of variable θ which may satisfy both the given equations, like

$$\cos \theta = \cos \alpha$$
 and $\sin \theta = \sin \alpha$

$$\theta = 2n\pi + \alpha$$
, $n \in I$

Similarly,
$$\sin \theta = \sin \alpha$$
 and

$$\tan \theta = \tan \alpha$$

$$\theta = 2 n \pi + \alpha$$
, $n \in I$

Rule: Find the common values of θ between 0 and 2π and then add $2\pi n$ to this common value